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Uniform-density cold neutron stars in general relativity 

K D Krori and P Borgohain 
Mathematical Physics Forum, Cotton College, Gauhati-1, India 

Received 14 August 1974 

Abstract. Nauenberg’s uniform-density approximation method has been applied to study 
the stability of uniform-density neutron stars obeying (a)  an equation of state due to Cohen, 
Langer, Rosen and Cameron, (b)  an equation of state due to Bethe and Johnson and (c) ex- 
treme relativistic equations of state. It has been found that neutron stars may be stable in 
the first two cases but are unstable in the third case. 

1. Introduction 

Recently much interest has been evinced in the studies of the properties of neutron stars 
in the framework of general relativity. Oppenheimer and Volkoff (1939) initiated the 
studies by investigating the properties of a neutron core composed of an ideal (non- 
interacting) relativistic neutron gas. Zeldovich (1959, 1961), Cameron (1959), Sakyan 
(1963) and others have made contributions to the studies in this line by investigating 
different types of interactions possible in the dense neutron matter, as present in a 
neutron star. These studies are, however, based on numerical integration of the differ- 
ential equations of hydrostatic equilibrium in general relativity obtained by Tolman 
(1934, 1939) and Oppenheimer and Volkoff (1939). Though this method is essential for 
the determination of the exact structure of the neutron star, it does not lead to a simple 
understanding of the properties of the star. Recently Nauenberg (1972) has developed 
an energy variational principle as an alternative approximate method and subsequently 
he, along with Chapline, (1973) has applied i t  to the uniform-density approximation for 
a cold star and obtained analytic expressions for the mass, the number of baryons and 
the radius of such a star. Applying these expressions to the equation of state of an ideal 
(non-interacting) relativistic neutron gas and also to the equation of state of a neutron 
gas where interneutronic interactions were taken into account, they have found that in 
both the cases the results obtained by the uniform-density approximation method agree 
fairly well with exact results obtained by numerical integration of the equations. The 
main advantage of the method is that the mathematics is fairly simple and a better 
insight into the problem may be obtained. 

In this paper we apply the uniform-density approximation method first to two 
realistic equations of state of neutron gas and then extend the application of this method 
to the equations of state of extreme relativistic, completely degenerate, cold neutron gas. 
In $ 2  of this paper we give a brief outline of the energy variational method in the 
uniform-density approximation. In § 3 we apply this method to the realistic equations 
of state for neutron gas suggested by (i)  Cohen et a1 (1970) and (ii) Bethe and Johnson 
(1973). We also investigate the stability of the solutions against radical perturbations 
and find that in both cases certain stable solutions may be obtained. In $ 4.1 we extend 
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the application of the method to the equations of state for extreme relativistic, completely 
degenerate, cold ideal (non-interacting) neutron gas. In $4.2, we study the effect of 
interneutronic interactions on the properties of the neutron matter by considering 
different types of interactions suggested by Zeldovich (1959, 1961) and Cameron (1959) 
and Sakyan (1963). In tj 4.3 we investigate the stability of our solutions and find that in 
all the cases the solutions are unstable. 

2. Energy variational method in the uniformdensity approximation 

In general relativity, the mass M(r) and the number of baryons A(r) of a spherically 
symmetric distribution of matter inside a sphere of coordinate radius r are given by 

t(r)r2 dr s,' [I - 2 G M ( r ) , l ~ ~ u ] ~ / ~  
A ( r )  = 4n 

where p is the mass density and t is the baryon number density. For constant-density 
spheres, Nauenberg carried out the integrations in (1) and (2) analytically and obtained 
the following expressions for the total mass M, total number of baryons A and the 
radius R : 

M = 4npR3 (3) 

where 

2GM 
sin2% = - 

Rc2 ' 

The equilibrium condition is obtained by setting dM/d,yla = 0 and is given by 

P -- 
pc2 - a x )  

where pressure p is determined by 

and r ( x )  is a function of x independent of the equation of state 

(7) 
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3. CLRC and BJ equations of state 

We now apply the uniform-density approximation method to two realistic equations of 
state applicable to a neutron gas. Both the equations of state can be put in the form 

p = a(v- 1)t' (10) 

pc2 = m,c2t + atv (1 1) 

where m, and t are the mass and particle density of the neutrons respectively and a and 
v are two constants. 

3.1. CLRC equation of state 

To describe the behaviour of a dense neutron gas Cohen et a1 (1970) have suggested an 
equation of state of the form given by equations (10) and (1 1) where they have taken 
v = 2.9. This equation holds for p 3 10'4gcm-3. Taking a = lo-'' and using (10) 
and ( 1  1) in (3), (4) and ( 5 )  we get 

A = 2nc6tL3I2(x - sin x cos x) 
R = c ~ L " ~  sin x 

where 

(15) 
3 

8nG(m,c2r + 10-77t2'9)' L =  

Variation of masses M and m A  with density is studied by calculating M and m A  
for different particle densities starting from t = lo3'. The results are shown graphically 
in figure 1. 

3.2. BJ equation of state 

Bethe and Johnson (1973) also worked out an equation of state for cold, dense, neutron 
matter which is of the same form as given in equations (10) and (1 1). But in their equation 
which holds for p > 3.3 x 1014 g ~ m - ~ ,  they have taken v = 2-54. Taking a = 
and putting (10) and (1  1 )  in (3), (4) and ( 5 )  we get the expressions (12), (13) and (14) for 
M ,  A and R. But in this case 

3 
8rrG(m,cZt + 10-64t2'54)' L =  (16) 

In this case also we calculate M and m A  for different particle densities starting from 
t = lo3' and study the variation of these quantities with t .  The results are shown graph- 
ically in figure 1. 

3.3. Stability considerations 

We now examine the stability of our equilibrium solution against radial perturbations. 
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Figure 1. M-lg f and mA-lg I graphs for CLRC and BI. M and mA are in units of solar 
masses. 

The condition of stability in such a case is given by 

% > O  
ax2 

5 > 7dx) 

ie 

where T is the adiabatic index 

T =  ( I+---- ppcl)cppdp 
and T, is a function of x only. 

We calculate T and T, for different values of [ (x )  for both the equations of state and 
plot r-((x) and 7,-((x) on the same graph (figure 2). From the figure it is seen that in 
the case of the CLRC equation of state the two curves intersect at t = 4.62 x 
suggesting that condition (17) for stability is valid for t < 4.62 x lo3*. For the BJ 
equation of state the two curves intersect at t = 1.68 x which indicates that the 
stability of our solution is possible only for t < 1.68 x We have also calculated 
the fractional binding energy ( M  - mA)/mA for different particle densities for both 
equations of state. Now from our results (figure 3) it is seen that for the CLRC equation 
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Figure 2. Graphs of&) against 7 and r C .  A, rc-<(x); B, r-&) (CLRC); C, r-((x) (Cameron 
1959 and Sakyan 1963); D, 7-&)(BJ): E, 7-&) (Zeldovich 1961); F, r-<(x)(Zeldovich 1959); 
G. 7 - ( ( x )  (without interaction). 

Figme 3. Graphs of M - m A j m A  against Ig r .  A, Zeldovich (1961); B, Zeldovich (1959); 
C, without interaction; D, Cameron (1959)and Sakyan (1961); E, CLRC; F, BJ(M measured 
in solar masses). 

of state the binding fraction is minimum for t = 4.57 x lo3'. On the other hand M-t 
and mA-t curves (figure 1 )  show prominent peaks at this particle density. Thus we 
may conclude that a uniform-density neutron star whose matter distribution obeys a 
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CLRC type of equation of state may have stable equilibrium configuration for t < 4.57 x 
lo3’. For the BJ equation of state the binding fraction is minimum for t = 1.64 x 
At this point also both M-t and mA-t curves show prominent peaks (figure 1). Thus 
it may be possible for uniform-density stable neutron stars to exist, obeying a BJ type 
of equation of state for t < 1-64 x M ,  = 1.48m0, R ,  = 6.1 km 
for the BJ type of equation of state and for t = 4.57 x lo3’, M ,  = 3.06m0, R ,  = 11.3  km 
for the CLRC type of equation of state. 

For t = 1.64 x 

4. Extreme relativistic neutron gas 

4.1.  Without interaction 

We now extend the application of the uniform-density approximation method to the 
extreme relativistic neutron gas. The equation of state for an extreme relativistic, 
completely degenerate ideal (non-interacting) cold neutron gas having rest mass (the 
rest mass is considered following Inman (1965) since we are dealing with an extremely 
high density) is given by 

pc2 = m,c2t + 3Kt4i3 (21) 
where 

2 113 

K =A(%) he, t = N!V 
4 g  

For neutrons g = 1/2, m ,  = 1.67 x 
and (21) in (3), (4) and (5) one gets 

g and K = 2.45 x lo-’’  ergcm. Using (20) 

c4 
2G 

M = -HI  s i n 3 ~  

A = 2 d t H 3 ‘ * ( x  - sin j !  cos x) 
R = c’H”~ sin x 

where 

H =  
8rrG(m,c2t + 3K14i3)‘ 

We study the properties of a neutron star whose matter obeys the equations (20) 
and (21), by calculating masses M and m A  for different particle densities starting from 
t = The results are shown graphically in figure 4. 

4.2. With interactions 

Since the density of neutron stars is extremely high, the nuclear forces acting between 
them cannot be ignored. Also corrections must be made for the presence of protons, 
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Figure 4. Graphs of M and mA against Igf. A, Zeldovich (1961); B, Zeldovich (1959); 
C, Zeldovich (1961); D, Zeldovich (1959); E, without interaction; F, without interaction; 
G, Cameron (1959) and Sakyan (1961); H, Cameron (1959) and Sakyan (1961). Full curves, 
M used, broken curves mA used. Both are in units of solar masses. 

hyperons etc. Since the exact nature of the nuclear forces at short distances is, at present, 
not known, different workers have, from different considerations, put forward correc- 
tions for a neutron gas with interactions. Following Inman (1965) we will consider here 
three such corrections, as suggested by (i) Zeldovich (1959), (ii) Zeldovich (1961) and 
(iii) Cameron (1959) and Sakyan (1963). 

(i) Taking into account Zeldovich’s correction for interactions we have the following 
equation of state for extreme relativistic. completely degenerate, cold neutron gas : 

where 
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Using (27) and (28) in (3), (4) and (5) we get, 

c4 
2G 

M = - H i / ’  sin3x 

A = 2 n c 6 t H : ” ( ~  - sin x cos x )  (31) 

R = sin x (32) 

where 

(33) 
3 

8nG[m,c2r + 3Kt4I3 + (64/9n)K’/?(3n2)5’3(h/m,c)5t5/3] ‘ 
H I  = 

Taking /? = 1 we now study the variation of M and m A  with changing particle 
density by calculating M and mA for different values of t starting from t = The 
results are shown graphically in figure 4. From figure 4 it is clear that the effect of 
introducing the interaction term is to have larger masses for the same particle densities. 

(ii) A second type of correction suggested by Zeldovich (1961) for the above type of 
neutron matter leads to the following equation of state : 

64 
9n p = Kt4/3+-K’/?(3n2)2 

pc2 = ~ n , c ’ t + 3 K t ~ / ~  +-Kf/?(3n2)2 
64 
9n 

(34) 

(35) 

where K, K‘ and t are given by equation (29). 

and R respectively. But in this case 
Using (34) and (35) in (3), (4) and (5) we get expressions (30), (31) and (32) for M, A 

(36) 
J 

8nG[m,c2t+ 3Kt4l3 +(64/9rr)K’/?(3n2)2(h/mnc)6t2] ‘ 

For this case we take j3 = 3 and calculate M and mA as before for different particle 
densities starting from t = 

(iii) The third type of correction for dense neutron matter we consider is due to 
Cameron (1959) and Sakyan (1963). The equation of state in this case is of the form : 

H l  = 

The results are shown in figure 4. 

pc2 = mnc2t + 3Kt4i3 + K’ [ 23.9(3n2)’I3 ( ~ m:c)8t8/3 - 1 0 1 ( 3 n ~ ) ~  

where K, K‘ and t are given by equation (29). 

and R respectively. But in this case 

H l  = 

Using (37)  and (38) in (3), (4) and (5) we get expressions (30), (31) and (32) for M, A 

(39) 
3 

8nG{ mn?t + 3Kt4’3 + K’[23.9(3n2)8’3(h/m,c)8t8i3 - 10.1(3n2)2(h/m,(,)6t2]} ‘ 

As before in this case also we calculate M and m A  for different particle densities 
and study the variation of M and mA with t by plotting M-lg t starting from t = 

and mA-lg t graphs (figure 4). 
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4.3. Stability considerarions 

We now investigate the stability of a neutron star composed of dense extreme relativistic 
neutron gas obeying any of the four equations of state we have considered above. 
As in 5 3.3 in this case also we calculate T and T ,  for different particle densities for all the 
four equations of state. r-[(x) and r,-[(x) curves for all the four cases are shown in 
figure 2 .  From the figure i t  is clear that in all the four cases T < T ,  throughout the range 
of particle densities considered. This indicates that there cannot be any stable solution 
in this range. We have also calculated the binding fraction energy ( M - m A ) / m A  for 
different particle densities for all the four cases. The results are shown in figure 3. 
From the graph it is seen that none of the curves show a minimum of this quantity 
which also suggests that there cannot be any stable configuration within the range 
considered. 

5. Conclusion 

Applying uniform-density approximation method we have shown that i t  may be possible 
for stable neutron stars to exist obeying CLRC- and BJ-types of equations of state. We 
have also calculated maximum masses (M,), mA and radius R ,  for such stable stars. A 
comparison of our results with numerical solutions of the differential equation of 
hydrostatic equilibrium in general relativity indicates reasonable agreement. We have 
also extended the application of the uniform-density approximation method to neutron 
stars composed of extreme relativistic, completely degenerate, cold neutron gas and 
found that such a star is not stable. 
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